Injection Kicker Ceramic Chamber Impedance SDH 8/21/01

• Since last meeting:

- Would like to retain ability to pulse injection kickers with τ =200 μs exponential if P.S. can do it.
- Revisit resistive-wall impedance of the ring using arc vacuum chamber profiles and collimator tubes (rest of ring is r=10 cm)
- Explore the use of external conductors to reduce impedance at low frequency
- Slava Danilov finds that the impedance at very low frequencies (1 kHz) might be important for closed-orbit stability

External Conductors:

- Could place a good conductor on the outside and actively cool the eddy-current power dissipation (25 micron Cu gives P=5.5 kW):
 Impractical
- Could place a good conductor where eddy current loop is smallest,
 and thinner elsewhere: RF shielding might not be very good
- Place thick conducting stripes on the outer surface and kill eddy currents with blocking capacitors

18 micron TiN coating - 100 W/m Eddy current

18 micron TiN, 50 micron Cu external conductor

18 micron TiN with 50 micron Cu stripes with 3 uF caps

Thick Gold Top and Bottom 100 W/m Eddy current

Thick Gold Top and Bottom with 50 micron Cu stripes with 3 uF caps

Issues Related to External Conducting Stripes

- How do we put a good conductor on the outside of the ceramic chambers?
 - 2 mil copper foil attached?
 - Conductive pastes fired in an oven may need to do before Kovar flanges attached to ceramics
 - Conductor loaded paint (Au/Pt)
- Need discrete caps which handle radiation (ISIS experience)
- How do we make electrical connection to a stripe?

Conclusion and a Question

- External conductor reduces impedance below about 500 kHz. At low frequency reduction is very large.
- We should pursue this approach and come up with a practical solution.
- Need to understand low-frequency impedance requirements.
- Need to further optimize parameters of external conductor.
- The only way to reduce impedance above about 500 kHz is with thicker internal coating.
- Thermal analysis assumed natural air convection. Can we build in at this stage forced air convection? 3 ft/sec air flow cuts ΔT in half.
- If so, we could put even thicker coating on inside.